O ct 2 01 7 EXTREMAL KÄHLER - EINSTEIN METRIC FOR TWO - DIMENSIONAL CONVEX BODIES

نویسنده

  • ALEXANDER V. KOLESNIKOV
چکیده

Given a convex body K ⊂ Rn with the barycenter at the origin we consider the corresponding Kähler-Einstein equation e = detDΦ. If K is a simplex, then the Ricci tensor of the Hessian metric DΦ is constant and equals n−1 4(n+1) . We conjecture that the Ricci tensor of D Φ for arbitrary K is uniformly bounded by n−1 4(n+1) and verify this conjecture in the two-dimensional case. The general case remains open.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toric Geometry of Convex Quadrilaterals

We provide an explicit resolution of the Abreu equation on convex labeled quadrilaterals. This confirms a conjecture of Donaldson in this particular case and implies a complete classification of the explicit toric Kähler– Einstein and toric Sasaki–Einstein metrics constructed in [6, 23, 14]. As a byproduct, we obtain a wealth of extremal toric (complex) orbi-surfaces, including Kähler–Einstein ...

متن کامل

Kähler Uniformization from Holographic Renormalization Group Flows of M5-branes

In this paper, we initiate the study of holographic renormalization group flows acting on the metric of four-manifolds. In particular, we derive a set of equations which govern the evolution of a generic Kähler four-manifold along the renormalization group flow in sevendimensional gauged supergravity. The physical eleven-dimensional M-theory setup is given by a stack of M5-branes wrapping a cal...

متن کامل

COMPLETE EINSTEIN-KÄHLER METRIC AND HOLOMORPHIC SECTIONAL CURVATURE ON YII(r, p;K)

The explicit complete Einstein-Kähler metric on the second type Cartan-Hartogs domain YII(r, p;K) is obtained in this paper when the parameter K equals p 2 + 1 p+1 . The estimate of holomorphic sectional curvature under this metric is also given which intervenes between −2K and − 2K p and it is a sharp estimate. In the meantime we also prove that the complete Einstein-Kähler metric is equivalen...

متن کامل

Ricci Flow Unstable Cell Centered at a Kähler-einstein Metric on the Twistor Space of Positive Quaternion

We show that there exists a 2-parameter family F of Riemannian metrics on the twistor space Z of a positive quaternion Kähler manifold M having the following properties : (1) the family F is closed under the operation of making the convex sums, (2) the Ricci map g 7→ Ric(g) sends the family F to itself, (3) the family F contains the scalings of a Kähler-Einstein metric of Z. We show that the Ri...

متن کامل

A Note on the K−stability on Toric Manifolds

In this note, we prove that on polarized toric manifolds the relative K-stability with respect to Donaldson’s toric degenerations is a necessary condition for the existence of Calabi’s extremal metrics, and also we show that the modified K-energy is proper in the space of G0invariant Kähler metrics for the case of toric surfaces which admit the extremal metrics. 0. Introduction Around the exist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017